文章编号:0258-7025(2002)10-0925-04

非晶 As₂S₃ 半导体薄膜在激光作用下的 性能及结构研究

刘启明,干福熹

(中国科学院上海光学精密机械研究所,上海 201800)

提要 在激光辐照或退火作用下 "As₂S₃ 非晶半导体薄膜的光学吸收边出现红移现象,并且随着激光功率的增大和 辐照时间的延长 红移值增大,并最后达到饱和。这种红移在先经过退火处理再激光辐照的薄膜中是可逆的。从 扫描电镜的形貌图中也可以看出 经激光辐照后,薄膜表面有晶相出现,且随着激光功率的增加,晶相出现增多。 As₂S₃ 非晶半导体薄膜中光致效应的产生是由于光致结构变化所致,对其产生原因,进行了机理分析。 关键词 非晶 As₂S₃ 半导体薄膜,光致暗化,光致结晶 中图分类号 0484.4 文献标识码 A

Changes of Properties and Structure in Amorphous As₂S₃ Semiconductor Films Induced by Light Illumination

LIU Qi-ming , GAN Fu-xi

(Shanghai Institute of Optics and Fine Mechanics, The Chinese Academy of Sciences, Shanghai 201800)

Abstract The optical absorption edges of amorphous As_2S_3 films shifted to lower energy with band gap light illumination or annealing near the glass-transition temperature. The magnitude of red shift increased with the increase of the intensity of illumination light and the time of illumination and became saturated finally. The red shift in well-annealed As_2S_3 film was reversible. Photocrystallization was also observed in the illuminated As_2S_3 films with scanning electron microscope (SEM) measurements and the crystal phase was more with higher intensity of illumination light. The photoinduced effects in amorphous As_2S_3 films were ascribed to photostructural changes and the change mechanisms are discussed in this paper.

Key words $\operatorname{amorhous} \operatorname{As}_2 \operatorname{S}_3$ semiconductor films , photodarkening , photocrystallization

1 引 言

近些年来,人们对非晶硫化物半导体研究较多, 其中主要原因是因为这类材料具有独特的记忆功 能,在光的作用下,能产生许多光致效应,如光致暗 化效应、光致结晶、光致褪色和光掺杂效应等,因而 在众多方面具有很大的应用价值,如高密度信息存 储、全息存储、光电子集成器件及光波导等^{1~51}。尤 其是硫系非晶半导体中的可逆光致暗化效应⁶¹,即 在一定强度光的辐照诱导下发生光学吸收边的红 移,并且能够在玻璃转变温度下退火或亚带隙光的 辐照而复原。对于这种效应,人们虽已研究了多年, 但其产生机理仍未十分清楚。硫系非晶半导体由于 具有光致可逆的光致暗化效应,因此可以作为存储 介质使用。硫系非晶半导体的光致结晶,也是人们 一直比较感兴趣的一种光致效应,因为利用这种可 逆的光致结晶,即可逆的相变过程可以实现信息的 读写和存储。早在1970年,硫系非晶半导体合金薄 膜作为相变光盘的存储介质就已受到人们的广泛关 注。由于相变材料能被单一激光射线完全重写,因 此半导体相变材料在高性能光盘如 DVD-RW 方面 有着很大的应用潜力。目前,广泛应用的半导体相

收稿日期 2001-07-31; 收到修改稿日期 2001-10-16

作者简介:刘启明(1973—)男,湖北人,中国科学院上海光学精密机械研究所博士生,主要从事非线性光学材料方面的研

变薄膜主要为 GeSbTe 三元系统和 AgInSbTe 四元系统,对 S-基硫系非晶半导体的光致效应及其存储性能研究不多。As₂S₃ 非晶半导体由于成玻性能好,物化性能稳定,热稳定好,在可见光区有较好的透过性。因此,本文以 As₂S₃ 非晶半导体薄膜为研究对象,探讨其在光作用下的结构变化及其机理,分析其存储性能,以开辟新一代的光存储介质。

2 实 验

2.1 样品制备

实验以高纯 5 N 的 As 和 S 粉为原料 按设计组 成配比在分析天平中称量后置于石英玻璃管中,抽 真空至 10⁻⁵ Pa 左右,为使反应充分进行,熔封石英 管后于摇摆炉中制样。为防止制样过程中管内蒸气 压力过大而发生爆炸,采取如下措施:在450℃以前 升温速率为 3℃/min 并在 450℃时恒温 1 h 然后再 以 5℃/min 的升温速率升温,升到 600℃时恒温 48 h 后在空气中自然冷却 ,得到 As,S, 块体玻璃 , 然后在 玛瑙钵中研磨成粉末。采取传统的热蒸镀膜方法, 以 As₂S₃ 粉末为蒸发源材料,在 DM220 型真空镀膜 仪上以 K₉ 玻璃为衬底蒸镀 As₂S₃ 非晶半导体薄膜, 系统抽真空至 10⁻³ Pa,薄膜厚度在 200~800 nm 范 围内。薄膜在 180℃(低于 As,S, 玻璃的转变温度), Ar 气气氛炉中退火 1 h。激光辐照采用氩离子激光 器 波长为 514.5 nm 辐照光斑大小为 ∮ 3 nm。 2.2 样品测试

XRD 采用 D/max-2550V 型 X 射线衍射仪进行 测试 测试条件为 Cu/40kV/300mA K_a ,扫描角度为 10°~60°。IR 测试采用 Landa-1600 型傅里叶红外吸 收光谱仪 ,最高分辨率为 0.17 cm⁻¹ ,采用粉末 KBr 压片测试方法。薄膜的吸收光谱测试是在 Landa 900UV/VIS/NIR 光谱仪上进行的 ,测量范围为 2.5~ 2.9 eV。薄膜的 SEM 测试是在 EPMA-8705QH2 型电 子探针扫描电镜组合仪上进行的 ,薄膜在测试前镀 上导电金膜。

3 结果及分析

为了确定 As₂S₃ 半导体块体玻璃和薄膜是否为 非晶态,对二者进行了 X 射线衍射分析,其结果见 图1,从图中可以看出,As₂S₃ 半导体块体玻璃和薄 膜样品的衍射图中均没有典型的衍射析晶峰出现, 表明二者均呈现出较好的非晶态。其中,薄膜的衍 射谱中出现两个宽的衍射峰,这是 K₉ 玻璃衬底影响 而导致的结果。

在红外波段范围内(400~4000 cm⁻¹),硫属化 合物的红外吸收光谱中出现的吸收峰主要是由硫系 非晶半导体中的杂质基团引起的。图 2 是 $A_{s_2}S_3$ 非 晶半导体块体玻璃和薄膜采用 KBr 压片方法测得的 红外吸收光谱图。从图中可以看出,由于实验中原 料均采用高纯的 As 和 S ,因此红外光谱图中吸收峰 较少,表明 $A_{s_2}S_3$ 非晶半导体的玻璃和薄膜中杂质 都较少。由于实验中红外吸收光谱测试采用的是 KBr 压片方法测得的,由于 KBr 的吸水性,在图中, 在 3454.1 cm⁻¹处出现 – OH 基吸收峰(对应的波长 为 2.895 μ m),在 1636.3 cm⁻¹处出现 H – O – H 基吸 收峰(对应的波长为 6.111 μ m)⁷¹,可能是由于 KBr 的吸水性而引起的。

图 3 是 As₂S₃ 半导体玻璃薄膜的吸收光谱图 ,从 图中可以看出 经过激光辐照或退火处理后 ,薄膜的 光学吸收边移向低能处(即红处)。As₂S₃ 非晶半导

29 卷

体薄膜经过退火后,光学吸收边有一个较小的从(a) 到(b)的不可逆红移,但此时对薄膜进行激光辐照, 薄膜的光学吸收边将继续向低能处平移而到达(c) 处 在(c)处对薄膜再在低于玻璃转变温度下退火, 薄膜的光学吸收边又会恢复到(b)处,即(b)和(c)之 间通过激光辐照和退火处理可以实现可逆的转变。 在室温下 "As,S,非晶半导体薄膜直接经过激光辐照 后,光学吸收边将从(a)平移到(d)处,此过程也是不 可逆的。As₂S₃半导体玻璃薄膜光学吸收边的红移 是由于在激光的作用下 薄膜的光致结构变化所致。 薄膜的光学吸收边平移值的大小与激光的功率和激 光辐照的时间是有关系的 图 4 分别是 As, S, 非晶半 导体薄膜光学吸收边平移值的大小与激光功率大小 (a) 及激光辐照时间(b) 的关系,从图中可以看出,随 着激光功率和激光辐照时间的增大,薄膜的光学吸 收边的平移值增大,并最终趋于一种饱和状态。自 从 J. P. DeNeufville 等⁶发现硫系非晶半导体中的 光致暗化效应以来,人们对这种光致效应发生了浓 厚的兴趣 并进行了许多研究 但各国学者也只是根 据不同的材料体系,不同的材料制备方法和不同的 材料结构,对这种光致效应提出不同的想法和猜测, 但其产生机理至今仍然不太清楚。在 AsySa 非晶半 导体薄膜中,As和S都是二配位形式形成的极性共 价键 原子之间都是通过链状形式连接而成网络结 构 结构较韧 易于发生结构变化^[8]。由于 S 原子有 两个孤对电子 通常情况下 这两个孤对电子是不成 键的 并且位于价带的顶端 容易由于光辐照而被激

图 3 As₂S₃ 非晶半导体薄膜的吸收光谱图 薄膜的激光辐照条件为 50 mW 3 min 其中(a)未经任何处理的 新鲜薄膜(b)退火处理的薄膜(c)激光辐照的退火薄膜(d) 激光辐照的薄膜

Fig.3 Absorption spectra of As_2S_3 amorphous films The intensity of illumination light was 50 mW and the illumination time was 3 min. (a) as-deposited film ;(b) annealed film ;(c) exposed after annealed ;(d) exposed film

活从而导致结构变化。在 As₂S₃ 非晶半导体薄膜 蒸镀过程中 由于蒸发材料由气相状态骤冷在玻璃 衬底上 因而形成了具有许多错键的非晶态 此时薄 膜处于一种介于稳定态与不稳定态之间的亚稳态。 当薄膜经过激光辐照后 ,这种亚稳态会通过错键的 重新排列而弛豫到一种稳定的状态,并伴随有光学 吸收边不可逆的红移,即图 3 中(a)到(b)和(a)到 (d)是不可逆的。但当薄膜经过退火处理后处于稳 定态时 再进行光辐照 由于一定能量的光子与薄膜 网络结构中的原子相互作用,致使一些价键发生变 化,如 S - S 和 As - As 键向 Ge - Se 键的转变,这些 变化就导致了薄膜的结构发生了变化,即光致结构 变化,也就导致光学吸收边的继续红移。但此变化 在薄膜经过再退火处理后 ,薄膜又会弛豫到原来的 稳定态,即吸收光谱图上(c)与(b)之间是可逆的。 利用薄膜光致暗化效应光学吸收边平移的可逆性可 以设计出光存储材料。

图 4 As₂S₃ 非晶半导体薄膜的光学吸收边平移值 △E 与 (a)激光辐照强度(激光辐照时间为 3 min)(b)激光 辐照时间的关系(激光辐照强度为 50 mW)

Fig.4 Dependence of the magnitude of optical absorption edge △E on (a) the intensity of illumination light (the illumination time was 3 min), (b) the illumination time (the intensity of illumination light was 50 mW)

图 5 As₂S₃ 非晶半导体薄膜的 SEM 图 Fig.5 SEM pictures of As₂S₃ amorphous films (a)0 mW;(b)20 mW,3min;(c)100 mW,3 min

As₂S₃ 非晶半导体薄膜经激光辐照后光学吸收 边的红移 即光致暗化效应的出现 是由于薄膜的光 致结构变化所引起的。图 5 的(a)(b)(c)分别是 As₂S₃非晶半导体薄膜未经激光辐照和经 20 mW, 100 mW 激光强度辐照后的扫描电镜形貌图。从图 5(a)可以看出,没有经过激光辐照的As2S3 非晶半导 体薄膜,具有较光整的表面,没有晶体析出,当20 mW 的激光辐照到薄膜样品上时,有少量晶体析出, 并且随着激光强度的增加,晶体析出量增加。 当激 光强度增大到 100 mW 时,已经有大量的晶体析出。 薄膜在蒸镀过程中 ,在玻璃衬底上形成具有许多错 键的非晶态。激光辐照薄膜到一定程度,这些错键 会重新排列,局部形成一种有规则有序网络结构,也 就导致光致结晶效应产生,并伴随有光学吸收边的 红移。对于析晶的薄膜,当再用高功率或短脉冲激 光进行辐照时 薄膜熔化 此时快速冷却 薄膜又会 从晶态变为非晶态,即该析晶过程可以通过调节外 部条件来实现可逆的转变,可擦写相变光盘就是利 用非晶半导体薄膜的这一特性设计出来的。As₂S₃ 非晶半导体经激光辐照有微晶析出 ,说明薄膜经激 光辐照后 微观结构已经发生变化 正是这种微观结 构变化才导致了 As₂S₃ 非晶半导体薄膜光学吸收边 的红移 即光致暗化效应的产生。

4 结 论

As₂S₃ 非晶半导体薄膜经过退火或激光辐照处 理 ,薄膜的光学吸收边发生红移 随着激光功率的增 大和激光辐照时间的增加 ,吸收边的红移值增大 ,并 最后达到饱和。对于经过退火处理后的薄膜,经激 光辐照后吸收边发生红移,但这种红移经过再退火 而恢复到原来的状态。通过扫描电镜测试观察到 As₂S₃ 非晶半导体薄膜经激光辐照有晶相析出,并且 随着激光功率的增大而增多。本文对 As₂S₃ 非晶半 导体薄膜的光致暗化和光致结晶效应产生的机理进 行了分析。

参考文献

- R. M. Mehra, Amit Pundir, Avinashi Kapoor et al... Suitability of Ge-As-Te system for optical data storage [J]. J. Optics (Paris), 1996, 27(3):139 ~ 143
- 2 V. Alex, J. Weber. Optical data storage in semi-insulating GaAs[J]. Appl. Phys. Lett., 1998, 72(15):1820~1822
- 3 A. Ozols, O. Salminen, P. Rlihola *et al.*. Nonlinear exposure dependence of the holographic recording and relawational structural changes in amorphous As₂S₃ films [J]. J. Appl. Phys., 1996, **79**(7) 3397 ~ 3402
- M. D. Mikhailov, I. I. Kryzhanowsky, I. M. Petcherizin. Structure and properties of ion-beam sputtered As_xS_{1-x} films
 [J]. J. Non-cryst. Solids , 2000, 265 :1 ~ 8
- 5 I. Z. Indutnyi , P. E. Shepeljavi. Reversible photodarkening in As₂S₃ nanolayers [J]. J. Non-cryst. Solids , 1998 , 227 ~ 230 .700 ~ 704
- 6 J. P. De Neufville, S. C. Moss, S. R. Ovshinsky. Photostructural transformations in amorphous As₂Se₃ and As₂S₃ films [J]. J. Non-cryst. Solids, 1974, 13(2):191 ~ 223
- 7 A. M. Reitter, A. N. Sreeram, A. K. Varshneya et al... Modified preparation procedure for laboratory melting of multicomponent chalcogenide glasses [J]. J. Non-cryst. Solids, 1992, 139(2):121~128
- 8 S. R. Elliott. A unified model for reversible photostructural effects in chalcogenide glasses [J]. J. Non-cryst. Solids, 1986, 81(1-2).71~98